An Example of Applying the Codesign Method MOOSE

Peter Green, Paul Rushton, and Ronnie Beggs

Systems Engineering Group, Department of Computation, UMIST, Manchester, UK

Abstract

An extended example of the application of a new method
for the Object Oriented codesign of embedded systems
(MOOSE) is presented. The example concerns an
intelligent video system which is currently being
developed using MOOSE. The paper highlights the
notable features of the method (including executablity and
the commitment process) with reference to the design of
the video system, and presents tentative conclusions
regarding the method's suitablity for embedded system
codesign.

1. Introduction

A study in applying the hardware/software codesign
method MOOSE (Model-based Object Oriented Systems
Engineering) to the development of an embedded vision
system is presented. MOOSE is a graphical/textual
method which is geared towards the development of
embedded computer systems and leads to codesign after
the system as a whole has been investigated through the
use of abstract, executable models (uncommitted models).
Once the behaviour of the uncommitted model is deemed
satisfactory, its components are gradually committed to
hardware or software on the basis of 'systems engineering'
decisions, based on non-functional requirements, on the
results of analysing and executing the uncommitted model,
and also on previous knowledge and experience. The
result of this process is the committed model from which
the hardware and software components of the system are
implemented.

The vision system which is the subject of this paper, is
still in the early stages of development, and so the results
of applying the MOOSE method must be regarded as
tentative. However, sufficient progress has been made to
allow us to draw a number of conclusions about the
method, and identify areas where further work is
necessary (see Section 4).

0-8186-6315-4/94 $04.00 © 1994 IEEE

65

2. Introduction to MOOSE

The early stages of the MOOSE method involve the
construction of an abstract, executable model of the
system under development (uncommitted model), which
allows the architecture and behaviour of system to be
evaluated. The basic ideas and motivation behind model
execution are described in {8}, and are also similar to
those presented in [4] and [13].

Once the uncommitted model is deemed to be
satisfactory, the various components of the system are
committed to hardware or software, and detailed design
begins. Thus the partitioning of a system into hardware
and software subsystems only takes place after the system
as a whole has been thoroughly investigated. This
contrasts with the way in which embedded systems are
often developed, where partitioning decisions are taken at
a very early stage of development, and design and
implementation in the two technologies proceeds
separately. This approach clearly does not offer much
flexibility in evaluating the relative merits of
implementing sub-systems in hardware or software, a
problem that MOOSE has been specifically designed to
address.

MOOSE takes an Object Oriented approach to system
development. Much has been written about the merits of
Object Oriented software development (e.g. [1]) and many
of these benefits are equally applicable to hardware.
Briefly, Object Oriented approaches view a system as a
loosely coupled set of objects which interact only through
well-defined interfaces, and which conceal or encapsulate
details of their inner workings from other objects within
the system. Thus Object Orientation facilitates abstraction
in analysis, design and implementation, simplifying the
process of thinking about a system's overall
characteristics, and limiting the effects that changes to the
design of a particular object have on the rest of the
system. These features, along with the capacity to create
class hierarchies using inheritance, can also lead to the
creation of reusable libraries of components which
simplify the development of future systems.

2.1 The MOOSE Method

Only a brief introduction to MOOSE is presented here
and further details, including the semantics of the notation,
are given in [9]. The application of the method begins
with an analysis of the user requirements, and the
separation of requirements into the various categories such
as functional requirements (FRs), non-functional
requirements (NFRs), design objectives (DOs) and design
decisions (DDs), resulting in the Structured Requirements
(see [9]). The development of the uncommitted model
then proceeds as described below.

2.1.1 Uncommitted Models : The MOOSE notation
allows an uncommitted system model to be expressed as a
hierarchy of Object Interaction Diagrams (OIDs). This is
similar to the diagram hierarchy of Structured Analysis
[12], although the semantics are very different. Indeed,
individual OIDs have more in common with the object
diagrams of Booch [1], although OIDs provide more
comprehensive ways of describing interaction and
communication between objects, providing the additional
flexibility necessary to model mixed hardware-software
systems.

The elements from which wuncommitted OIDs are
constructed are shown in Figure la. External objects
(rectangular boxes) exist beyond the boundary of the
system under design, but interact directly with it, and so
are used to model devices such as sensors and actuators
which the system uses, as well as human users of the
system.

w] - Interaction
External Object CID Data Name [S
Time Continuous Data
——
D
<mmu Event Signal
Name —_—— > — -

Figure 1b. Additional committed notation.

A number of different mechanisms are provided to
describe the interaction between objects, within the
uncommitted model. An interaction simply represents one
object calling on another object to execute one of its
operations (i.e. one of its procedures or functions). This is
the form of interaction between objects familiar from most
Object Oriented development methods. Interaction lines
are annotated with the name of the called operation, and
conventions exist in MOOSE with respect to the prefixing
of interaction names to help in the interpretation of their
semantics, e.g. objects may GET data, deliver or PUT
data etc.

Interactions are sufficient to describe the
communication between objects in software-only systems.
However, in order to clearly and effectively model mixed
hardware-software systems, additional forms of interaction
between objects are needed, namely time continuous data
and event signals. Interaction by time continuous data is
provided for circumstances where an object needs to make
information available continuously (for example, current
time data) for other objects to access when necessary. This
kind of situation is not well modelled by the simple
interaction described above, and is sufficiently common in
embedded systems to warrant a special piece of notation.
Event signals model instantaneous occurrences and are a
very important feature of embedded computer systems,
and may arise both from the environment and within the
system itself, and basic event signals cause the receiving
object to execute a parameterless method. Events may also
be parameterised as described in [9].

Now that the basic notation of uncommitted models has
been described briefly, the hierarchy of OIDs can be
considered. The first diagram in the hierarchy (the context
diagram) represents the system as a single object, and
depicts its interactions with the environment. The system
object is then decomposed into a set of interacting objects,
each of which has responsibility for some significant part
of the system's overall functionality, as proposed in [11].
This OID shows how the objects interact with the
externals and with each other. Each newly introduced
object is then progressively decomposed, until the
remaining objects are simple enough to be considered
primitive 1.e. simple enough to be directly implementable.
Each object encountered in the decomposition process is
fully documented in terms of its functional
responsibilities, constraints on its implementation (for
example response time constraints), and its interactions
with other objects.

Primitive objects are described by class implementation
diagrams (CIDs) which form the basis of class definitions
for software objects. These resemble data flow diagrams
with operations shown as processes and state information
as data stores. The model is rendered executable by
coding each operation in a simple procedural language.

Besides operations and state, other object classes may
appear in CIDs, representing either inheritance or
instantiation. The details of this aspect of CIDs, and the
way in which class definitions may be synthesised for non-
primitive objects, is dealt with in [10].

2.1.2 Committing Models : The aims of the commitment
process are twofold. Firstly, decisions must be made as to
whether objects are to implemented in hardware or
software, and secondly issues regarding the number and
type of processors to be used, the algorithms which are to
be implemented etc. must be addressed. The way in which
these decisions are taken is not tightly prescribed by the
MOOSE method, allowing the most suitable approach for
a particular system to be used. However, the existence of
an executable uncommitted model allows feasibility
studies and analysis to be undertaken, and provides a point
of departure for constructing other more specialised
models, e.g. performance models [S], which can be used
to provide detailed information where conflicting NFRs
exist (e.g. performance vs. cost). See [9] for further
details.

Once objects have been committed, they are grouped
into soft and hard subsystems. A soft subsystem comprises
software objects which are to share the same processor,
whereas a hard subsystem is made up from hardware
objects which share data and control paths. Control
objects may be added to coordinate the activities of the
objects within either kind of subsystem. Communication
between the various subsystems is through protocol
objects which specify the interconnection rules between
subsystems for the purpose of implementation, eg. a
protocol object may define the communication mechanism
between two soft subsystems running on different
processors. Protocol objects are specified using CIDs, and
in implementations appear as classes inherited by the
interacting subsystems.

A subset of the notation used in the construction of
committed models, appropriate to the partial models
appearing later in the paper, is shown in Figure 1b.

2.2 Moving towards Implementation

If, after thorough investigation, the committed model is
felt to satisfactorily meet the system's requirements (both
functional and non-functional), then the detailed
development of hardware and software can proceed. This
development work will progress in a semi-independent
manner, although the executable committed model will
allow real implementations of software objects, and
emulations of hardware objects to be tested within the
framework of the overall system.

Work is currently in progress to automate the route from
committed model to detailed design and this involves

67

mapping soft subsystems into C++ class skeletons, and
hard subsystems into VHDL.

3. The Intelligent Video System

The system which will be used to illustrate the
application of MOOSE is a speaking LED/LCD display
reader for blind people. This is one instance of a generic
Intelligent Video System which is currently being
developed with MOOSE. One of the objectives of this
work is to create a library of reusable software and
hardware objects which can be used to construct new
video applications. However, for the purposes of this
paper, attention will be restricted to the LCD/LED Display
Reader.

The following sections describe the initial stages of the
model and briefly explain its operation. One of the
objects, the Pixel Filter, is then examined in detail. A
discussion of the development of this object is presented
to illustrate the MOOSE method.

3.1 The Display Reader

The requirements for the display reader system may be
briefly (and incompletely) stated as follows :

A system is required to read the led/lcd displays on
domestic electrical goods. The product is to be used by
blind people so information should be transmitted to the
user by a voice output. The device should have the
following properties: it must be simple to use without the
aid of sight, it should be inexpensive, robust, portable,
reliable and operate in real time.

The first stage of the MOOSE method is to analyse such
a product proposal and to create the Structured
Requirements. These partition the overall requirements
into functional and non-functional requirements, and
design goals for the system, as discussed in [9]. They
may be more detailed than the product proposal and seek
to include information that may have been implicit or
vaguely stated. For example, describing the display
reader as 'portable’ has been interpreted as meaning hand-
held, lightweight and battery powered. Hand-held and
lightweight are themselves interpreted to derive non-
functional requirements (NFRs) relating to the maximum
weight and size of the device. Recognising that the device
should be ‘battery powered' forces the issue of power
consumption to the fore. Hence 'Must operate with
minimum power consumption’ becomes a design objective
with a high priority. In terms of deriving an
implementation which conforms to these objectives, it has
been decided to implement the system on a single chip,
and some of the design implications of this decision are
discussed in Section 3.2.2.

Specifying that the device
should 'operate in real-time' is, in
this application, interpreted in
terms of a maximum acceptable
response time of 1 second from
image acquisition to spoken
output.

The way in which NFRs, DOs
etc. are allowed to influence the
development of the model is an
important feature of MOOSE.
However, as will be seen in the
next 2 sub-sections, at present
MOOSE only provides a
framework to do this, and work
on explicitly representing NFRs
etc. on the OID decomposition is
still in its early stages. Although
they are formally stated in the
Structured Requirements
document, their impact on the
OID hierarchy remains implicit.

3.1.1 Operation of the Display Reader Model : The
logical model of the Display Reader can be explained with
reference to the level O OID in Figure 2. The Display
Reader Manager object coordinates activity in the system,
initiating the capture of an image (by sending the
DO.frame message to the Camera object), 2-D filtering
(DO filter), and the calculation of a threshold grey-level
value for distinguishing between character/icon pixels,
and background pixels (GET.threshold). Once these tasks
have been initiated the Thresholder object is instructed
(via the PUT threshold message) to create a binary image,
which is then stored by the Staticiser. Using a binary
image rather than a grey-level image is quite sufficient for
the application [3], and helps to reduce the silicon area
and the power consumption of the fabricated device. The
Staticiser provides a stable platform for the Segmenter to
detect and extract segments from the binary image. These
are retrieved by the Display Reader Manager object which
performs character and icon recognition based on the
segment information.

Note that there is a potential timing problem with this
architecture: as the Histogram Accumulator requires an
entire frame to operate, it the Pixel Filter begins
producing output pixels before the entire frame has been
received by the object, the Thresholder will not have the
valid threshold for this frame. This is indicative of the
type of problem that could be encountered and must be
solved during the commitment process.

1)0 reset

GET threshold(thres)

68

C/
e

djtatbyte)
rSIT COMMANDS P

DO reset /_\
- /D;;imre\ (Enﬂclm')
A

\\\ 7‘\

AUDIO

Glplly

Reader

\
/N
frame /start franif end
PUT thresheld fmn;u(bm
(thres) /

_—frdine_start —
Threshoider
T~ ﬁ:@ end —

3.2 Pixel Filter Decomposition

Figure 2. Display Reader Level 0 OID.

The Pixel Filter object is a low level generic filtering
object that performs a 2-D convolution on a serial stream
of pixels, producing a serial stream of convolved pixels at
its output. Convolution of an image with a selected set of
coefficients produces a transformed image which reflects
the coefficients used. This is considered appropriate for
reuse since by simply changing the coefficients used then
different results can be obtained.

The decomposition and commitment of this object will be
used to illustrate MOOSE and notable features of the
method will be highlighted.

3.2.1 Uncommitted Decomposition of Pixel Filter : The
decomposition of the Pixel Filter in the uncommitted
model results in Figure 3. The Pixel Store object
represents the need to buffer incoming pixels in order that
the correct set of pixels for 2-D convolution are made
available. The Convolver object is responsible for
performing the convolution operation. The Filter
Controller object is included to implement the interface
interactions and control the filtering process. The
PUT.status interaction effectively resets the store and
allows it to store incoming pixels. The Convolver object
is passed parameters by the Controller identifying the
pixels to be filtered, and retrieves these pixels from the
Pixel Store via a GET interaction.

The objects at this stage are declared as primitive since
any further decomposition results in commitment
decisions (see Section 2 and [9]). For example,

decomposition of the Convolver would require decisions
about whether it is to be implemented as hardware or
software.

Thus, the construction of the uncommitted model allows
the designer to encapsulate functionality and state within
objects, postponing consideration of implementation
details until later.

Figure 3. Uncommitted Pixel Filter.

3.2.2 Commitment : The committed model evolves from
the uncommitted model via decisions made on the basis of
NFRs, DOs etc. about whether a particular object would
best be implemented in hardware or software.
Considering, for simplicity, the Pixel Filter object and the
NFRs relating to performance and silicon area, we can
make a number of simple calculations to illustrate the
commitment process.

We will assume an image size of 300 by 300 pixels, and
that we will implement the filter using a parallel hardware
architecture. With such an architecture, the major
bottleneck in the convolution operation is in the
multiplication time at each pixel in the filter matrix.
Current CMOS technology can easily implement an 8 bit
by 8 bit multiply within 200nS (where one set of eight bits
represents the coefficient and the other represents the
binary value of the pixel greyscale). Hence, including the
latency delay to fill up the pipeline, such a hardware
architecture could convolve the example image with a 3*3
filter matrix in approximately 0.02 seconds.

Now assume that the filtering is done in software.
Figures for a typical embedded system processor, such as
an ARMS6 running on a 20 Mhz clock, indicate that each
pixel requires 5 WS processing time, necessitating
approximately 0.5 seconds to process the entire frame.
(These figures were obtained from a knowledge of the
number of machine cycles that each operation in the
filtering process takes).

Now although the software implementation of filtering
is well within the required 1 second, the bottleneck in the
overall image processing time will be in the object
recognition part of the Display Reader Manager object.
Hence, in order to maximise the probability of the system
meeting its performance target, the hardware

69

implementation of the Pixel Filter should be used, so as to
relax the performance constraints on the Display Reader
Manager object as far as possible.

e
" Pixel Value

Pixe] Value

frame_end

frame_start

reset

~.

frame_end frame start

Figure 4. Committed Systolic Pixel Filter.

Now that it has been decided that the Pixel Filter should
be implemented in hardware, it is necessary to consider
different design options. Since this work is still in its early
stages, only the systolic array [7] architecture shown in
Figure 4 so far has been examined. The functionality of
the Convolver in the uncommitted model maps to the
Systolic Array, the Pixel Store maps to the Shift Register
object and the Filter Controller maps to the Pixel
Validator object. A systolic architecture, whilst not
reducing the overall gate count in comparison with a more
standard multiply-accumulate architecture, does present
significant silicon real estate savings by virtue of its
regularity and local interconnectivity[7].

The diagram shows how, in the process of commitment,
the interactions etc. in the uncommitted model must be
replaced by physical connections which implement the
protocol of those interactions. Consequently the
interaction PUT.pix has been mapped to a Pixel Clock
event and a continuously available Pixel Value. In this
way all possible interactions in the uncommitted model
are replaced by their hardware committed equivalents.

The commitment of the Pixel Filter object to the systolic
architecture illustrates additional features of the MOOSE
method. In committing the Convolver to the Systolic
Array and the Pixel Store to the Shift Register, there has
been a small migration of responsibility, since besides the
storage implicit in the Shift Register object, each
processing element in the Systolic Array contains a small
amount of storage in terms of a pixel latch (i.e. storage for
a single pixel value). Thus, pixel latches are common to
both the Systolic Array and the Shift Register (see Figure

5), and so are represented as a class in MOOSE, inherited
by both objects.

<R2-(N-1)=>Pi

<R1>Pixel Valu <RN>Pixel Value
T —

e
Pixel Clock
Ve

v/
Figure 5. Committed Shift Register.

Figure 5 shows the use of MOOSE's repetition notation
and how it can be achieved to a highly compact yet
understandable representation of a repetitive structure.
The Shift Register object is essentially a collection of
Pixel Latches which are cascaded to form a synchronous
sequential shift register. MOOSE allows a number of
identical objects to be defined as a single object with the
repetition notation defining the number of object
instances. Repetition is denoted by the use of <R 1-N>,
on the object bubble, where N is a repetition number.
This is clearly an important feature of the notation,
particularly for hardware commitment since repeated
regular structures are most suitable for VLSI
implementation. Note here that the CID of the FIFO
Latch_1 object defines the class Pixel Latch.

The systolic array implementation of the Pixel Filter is
simply one particular hardware design for this object
which has been investigated. Alternative designs will be
considered shortly.

3.3 Executing the Model

The executability of the Display Reader model has, to
date, been valuable in two respects. It has provided a basis
for experimentation with the uncommitted model
architecture, and also has enabled errors in object design
to be easily identified.

The initial work on the model involved a number of
simple experiments, the purpose of which being twofold:
firstly, to validate that the model operated correctly and
secondly, to assess the effects of various thresholding and
filtering algorithms. At this stage an actual camera could
not be connected to the model so the model was executed

70

using pre-captured scenes read from an image file. A
figure of merit for each experiment was generated by
calculating the probability of error in the thresholded
image relative to a pre-determined 'best' configuration.
Initial results were encouraging. The construction and
execution of alternative algorithms and model
configurations proved to be quick and straightforward.
Work is now in progress to carry out a number of more
sophisticated and rigorous experiments, to assess the
operation of different image processing and segmentation
techniques.

The execution of the model has also proved useful in
identifying logical errors in the objects' design. For
example, by executing the model, two important problems
with the Pixel Filter object were discovered. Firstly, a
deadlock situation was identified in the initial parallel
architecture. Secondly, a subtle error in the convolution
process was identified that only became apparent when the
filtered image was examined in detail. The ability to
identify and rectify such errors easily and at low cost
clearly illustrates the advantages of an executable model.

The use of the executable model for evaluating
commitment decisions is considered to be an important
aspect of the MOOSE approach. However, work on the
Display Reader system has not yet progressed enough for
an evaluation of this aspect of the method to be made.
However, we have been encouraged with the initial results
based on experimentation with the uncommitted model
and the systolic Pixel Filter. As a larger number of
committed objects are completed, a more detailed
evaluation the approach will be undertaken.

4, Discussion and Conclusions

We will now discuss some of the issues raised by the
preceding study. It should be noted, however, that since
this work is still in its early stages, the conclusions drawn
are of a tentative nature.

To provide a framework for the discussion, it is useful
to reflect on some of the features of a design method
which make it suitable for the development of embedded
systems. The features outlined below are not intended to
be exhaustive, but do represent important issues which
must be addressed by a design method for embedded
systems.

Notation : A method's notation should be simple and clear,
whilst being expressive enough to describe abstractions
appropriate to mixed hardware/software systems.

Consistent progression between life cycle phases

It ought to be simple and straightforward to progress
through the life cycle phases from analysis through to
implementation, and the cost of the inevitable iteration

between phases should be minimised. Revisiting previous
life cycle phases during the development of embedded
systems can be extremely costly.

Reasoning about a design : A method ought to provide a
mechanism for analysing a design with respect to the
system's requirements (both functional and non-
functional). This mechanism will provide the basis for
partitioning decisions.

Tool Support : Tools ought to be available to support all
aspects of a method, from model capture, analysis and
execution, through to the creation of skeleton
implementations.

We will now consider how well MOOSE supports the
features listed above.

As far as notation is concerned, both the introduction
and the case study have demonstrated that though simple,
the notation does support highly usable abstractions of
commonly occurring mechanisms within embedded
systems. Indeed the notation is as rich as that presented in
[14], whilst at the same time enjoying the benefits of an
Object Oriented basis. Representing a system in terms of a
hierarchy of collaborating objects has been demonstrated
to provide a number of benefits (see [1] and Section 2),
and these are as relevant to hardware as to software. The
augmentation of the basic Object Oriented communication
mechanism (known as an interaction in MOOSE) with the
other mechanisms discussed in Section 2.1.1, allows many
common embedded system communication modes to be
modelled in a realistic, but abstract, way.

The fact that MOOSE is based on Object Oriented
principles means that the transition between life cycle
phases is consistent and straightforward since there is no
change in the underlying representation of the system, as
there is with other kinds of approach (e.g. Structured
Methods [2]). This allows the abstract uncommitted model}
to gradually evolve into a more detailed (committed)
representation by means of the commitment process. The
fact that a low-cost executable model of the system is
available at an early stage in development helps to reduce
the expense of iterating between life cycle phases by
allowing a thorough investigation of the model prior to
moving into the more detailed (and costly) stages of
development.

The executability of MOOSE models also provides a
basis for evaluating design alternatives as an aid to
partitioning although, with respect to the Display Reader
system, work has not yet progressed far enough to
demonstrate this aspect of the method. Executability also
allows a detailed assessment of the algorithms to be used
in a system (in our case, image processing algorithms) in

71

the context of a full system model, clearly a helpful
feature.

At present, MOOSE provides a framework for making
hardware/software partitioning decisions and a measure of
support (via executability) for evaluating them in the
context of the system's NFRs. Further work in this area is
needed, specifically in connection with the formal
representation of NFRs within models, and tool support
for evaluating partitioning options on the basis of NFRs
(perhaps through the use of cost functions) and it may be
possible to include some elements of other published
approaches to partitioning within MOOSE (for example,
[6]). It should be noted, however, that this is not a
straightforward issue, since the NFRs, DOs etc. requiring
consideration during commitment will vary from system to
system. Thus, we envisage an assistive tool which helps
the designer evaluate the NFRs/DOs etc., rather than a
wholly automated tool which mechanically evaluates all
the constraints.

It is interesting to note that the commitment process
may ultimately be simplified somewhat due to MOOSE's
Object Oriented foundation. This is because one of the
major aims of Object Oriented approaches is class (or
object) reuse. Thus, if committed objects developed for
one system are stored for future use along with
characteristics such as performance, gate count etc., then
the appropriate constraint information will be available
when the object is considered for use during the
commitment phase of a subsequent system.

As can be seen from the above, MOOSE is, to a certain
extent, lacking in tool support, both in the area of
commitment assistance, and also in the semi-automatic
mapping from committed model into C++ and behavioural
VHDL. However, work is in progress to automate the
route from committed model into C++ and VHDL, and
this will be reported shortly.

The results of the initial phase of this study appear to
indicate that MOOSE has the potential to provide a
comprehensive framework in which to design embedded
systems, although further development work is necessary.

Acknowledgements

This work has been funded by the European
Commission as part of the Open Microprocessor Systems
Initiative (OMI) within the ESPRIT programme (Project
OMI/DE-ARM 6909). We would like to acknowledge the
input to this work from our colleagues who are involved in
the development of the MOOSE method. In particular,
thanks are extended to Professor Derrick Morris, Gareth
Evans, Simon Schofield and Martin Bland.

References

{11 G. Booch, Object-Oriented Design with Applications,
Redwood City, Ca: Benjamin-Cummings, 1991.

[2] P.Coad and E. Yourdon, "Object Oriented Analysis”,

[3] D.G. Evans and P. Blenkhorn, "A Voice Output Reader for

Displays on Video Cassette Recorders and other Domestic

Products”, to be published in Journal of Re-habilitation

Research and Development, 1994.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Polti, R.

Sherman, A. Shtull-Trauring and M Trakhtenbrot,

"STATEMATE: A Working Environment for the

Development of Complex Reactive Systems”, IEEE Trans.

Soft. Eng., vol. 16, no. 4, pp. 403-414, 1990.

P.P. Jain, S. Dhinga and J.C. Browne, "Bringing Top Down

Synthesis into the Real World", High Performance

Systems, vol. 10, no. 7, pp. 86-94, 1989.

[6]1 S. Kumar, J.H. Aylor, B.W. Johnson and Wm.A. Wulf, "A

4]

[5]

Framework for Hardware/Software Codesign", IEEE
Computer, pp. 39-45, Dec. 1993.

[7] H.T. Kung, "Why Systolic Architectures?', IEEE
Computer, Pp. 37-46, Jan. 1982.

72

[8] D. Morris and D.G. Evans, "Modelling Parallel and
Distributed Systems”, Parallel Computing, vol.18, no. 7,
pp. 793-806, 1992.

[9]1 D. Morris, D.G. Evans and P.N. Green, "Engineering
Embedded Computer Systems”, to be published, 1994.

[10] D. Morris, D.G. Evans and S. Schofield, "Model-based
Object Oriented System Engineering (MOOSE): Part 1 - A
Design Method and Notation, o be published, 1994.

[11]R. Wirfs-Brock and B. Wilkerson, "Object-Oriented
Design: A Responsibility-Driven Approach”, SIGPLAN
Notices, vol. 24, no. 10, pp. 71-75, 1989.

[12]1 E. Yourdon, Modern Structured Analysis, Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[13] P. Zave, "The Operational Versus the Conventional
Approach to Software Development”, Comm. ACM, vol.
27, no. 2, pp. 104-118, 1984.

[14] P.T. Ward and S.J. Mellor, Structured Development for
Real-Time Systems, Englewood Cliffs, NJ: Yourdon Press
Computing Series, 1985.

